Improvement of pre-harvest sprouting and grain quality in CMS line of hybrid rice using MAS

Guangjun Ren

Sichuan Academy of Agricultural Sciences

The three-line system of hybrid rice breeding and production is an important milestone in the process of rice breeding followed by the application of dwarf varieties.

conventional semi-dwarf
Three-line *indica* hybrid rice

increase yield more than 20% yield

In 2006, the area growing three-line hybrid rice has reached 12.92 million hm², accounting for 84 percent of the total hybrid rice–growing area in China.

I you 838, Gangyou 725, Gangyou 527 and I you -7 have become the fourth update of the leading variety-group of medium *indica* hybrid rice in China.

- These varieties made an important contribution to the stability and development of rice production.
- However, most of them are criticized for poor appearance quality and bad eating quality, which was caused primarily by the poor quality of their cytoplasmic male sterile lines (CMS), G46 A and II -32 A.

Rice grain quality of leading mediun hybrid rice

Variety	BR %	HR %	L/D	Chalky %	GC mm	AC %
Gyou 725	82	43.4	2.5	57	38	21.9
II vou 838	78.6	50.6	2.5	85	44	23.3

Breeding and application of an aromatic rice CMS line, Ch-29A

◆ Aroma is one of the most important characteristics for good quality rice. good quality, aromatic hybrid rice with a high yield would need to be developed by adding an aroma gene.

F2 non-aroma : aroma = 3:1.								
F ₂	Year	Total	Non- aroma	Aroma	x ² (3:1)*	P-value		
Ch- 29B/Le	2005	281	211	70	0.019	0.95 to 0. 99		
	2006	1182	902	280	1.084	0.20 to 0.30		
Ch- 29B/R2	2006	2400	1823	577	1.176	0.20 to 0.30		

BaSF6F SF6_Genomic 29B_SF6F	IADDIISCATTIACTGEGAGTTATGAAACTGETATATAIIICAGCTGETGET TADDIIGCATTACTGEGAGTTATGAAACTGCTAAAAGATIAIDDUIICAGCTGETGET PPPPPP
-	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
298_SF6F	
29B SF6F	
	ATEGTTAAGETTTETTTCCAAATTTCTETCCATATTTTTTETTCTCTCTTTCTACTAACTCT
Le_SF6F	ATEST TAACETTTETTTECAAATTTETECCATATTTTTETTCTCTCTC
DeSF6F	RIGGITARGETTETTCCARATTICTETEGATATTITTETTCTCTCTTTCTACTACTC
Ba_SF6F	RIGGITANSGITTGITTCCARATTICTGIGGATATTITTGITCTCTTTCTACTAACTCI
SF6_Genonic	RIGGITANCGIFFCFFFCCARATTICTGTCCATATTITTGFFCTCTTTCTACFARCTCF

29B SF6F	CTATTATCARTECTCARTETTETECTTTTCTTTTAACTCCTTTACTTTTTAAATTCTC
Le SF6F	CIAITATCAATTCTCAATCTTCTCTTTTTTTTTTTTTTT
DeSF6F	CIAITATCAATTCTCAATGTTGTCCTTTTCTTTTAACTCCTTTACTTTTTAGAATTGTCA
BaSF6F	CIAITATCAATTCTCAATCTTCTCTTTTTTTTTTTTTTT
SFé_Genomic	CTATTATCAATTCTCAATGTTGTCCTTTTCTTTTAACTCCTTTACTTTTTAGAATTGTG

298_SF6F	ICRRERCACTITEASCATCATTCTASTACCCACTTCTATCCTETTTCTTACCTTTTATE
Le SF6F	ICARGACACTITEAGCATCATTCTAGTAGCCAGTTCTATCCTGTTTCTTACCTTTTAT
DeSF6F	ICRREACECTTTERECATCATTCTRETECCEGTTCTATCCTETTCTTRCCTTTTTAT
BaSF6F	ICAAGAGACTTTGAGGATGATTGTAGTAGGGGAGTTGTATGGTGTTTGTAGGTTTTTAT
SF6_Genonic	ICAAGACACTTTCACCATCATTCTACTACCCACTTCTATECTGTTTCTTACCTTTTATC

Rice quality of Ch-29A			
Brown rice rate	80.2%		
Milled rice rate	74.1%		
Head rice rate	59.4%		
Length / width ratio	2.4		
Grain had a length	5.7		
Chalky grain value	48		
Chalkiness	7.6		
Transparency	2		
Gel consistency	54mm		
Amylase content	21.6%		
Protein content	12.0%		

Variety	Trail Region	Yield t ha ^{.1}	Over CK %	HR rate %	L/W Ratio	Chalky grains %	Transpare ncy	AC (%)	GC (mm)
Chuanxiang you-2	Sichuan	8.19	+2.46	67	2.9	24		20.0	70
	Upstream of Yangtze River	8.37	-0.63	67	2.7	24.5		21.8	48
	Middle and Downstre am of Yangtze River	9.15	+5.57	63	2.8	31		22.1	53
Shanyou-63	Yangtze River	8.66	-	63	2.4	58	2	21.1	72
Gangyou 725	Sichuan	7.84		56	2.4	84	2	21.3	42

Variety	Trail Region	Yield t ha ⁻¹	Over CK %	HR rate %	L/W Ratio	Chalky grains %	Transpare ncy	AC (%)	GC (mm)
Chuanxiang you-8	Sichuan	8.18	+4.25	64.7	2.8	12		23.3	55
Chuanxiang you-993	Upstream of Yangtze River	8.87	0.40	66.5	2.8	18		21.9	68
Shanyou-63	Yangtze River	8.66		63.9	2.4	58		21.1	72
Gangyou 725	Sichuan	7.84		56.1	2.4	84	2	21.3	42

4.5 t ha⁻¹ of seed production can be achieved with Ch-29A as a female parent. The high yield reached 6.6 t ha⁻¹ for Chuanxiangdao no.5 seed production this year.

Pyramiding of good PHS resistance and nice grain quality into an elite *indica* CMS maintainer line, G46B

Gang 46A(G46 A) is a leading CMS line of medium hybrid rice production in Yangtze River and south-west China.

- the pre-harvest sprouting rate (PSR) of G46A in hybrid rice seeds was about 10%. in 2005, when the rainy weather lasted for a long time, the PHS of G46A has strong effects on hybrid rice seed quality due to a more than 50 % PSR.
- Therefore, hybrid rice seed production requires CMS maintainer and sterile lines with good resistance to PHS.

Lines	PSR %	Genotype of 484/485	AC %	Chalky grains %	Chalkiness
G46B	95.40	G	26.13	97.06	11.16
Lemont	2.98**	L	20.10**	2.64**	0.13**
K06	18.47**	L	20.03**	14.02**	1.11**
K23	10.85**	L	19.87**	12.22**	0.84 **
K45	16.35**	L	20.89**	22.99**	1.32 **
K65	11.82**	L	19.50°	26.96**	1.62**
K73	0.12**	L	20.40**	25.33 **	1.59**
K81	7.22**	L	20.03**	13.09 **	0.81 **
K89	6.95**	L	19.43**	14.99 **	1.06 **
K135	9.37**	L	20.15**	12.33 **	1.00 **
K152	13.24**	L	20.11**	20.55 **	1.51 **
K156	19.79**	L	20.12**	20.67 **	0.33**

Putative QTLs for PHS detected by CIM in the 'G46B'/ 'K81'F2 population								
Locus	Marker interval	Genetic distance ^{1)/} c M	LOD value	Phenotypic variance %	Additive effects	Dominance effects		
qPSR2	RM5512-RM5622	2.0	3.08	4.44	9.08	8.53		
qPSR5	RM1115-RM6034	3.5	7.67	11.49	13.81	-5.4		
qPSR8	RM447-RM3754	1.5	26.78	43.04	25.1	-5.34		

Amylose Content
G46B : 26.1%
101B: 21.0%
102B: 19.4%

Development of the introgression lines with intermediate amylose content by MAS

Amylose content (AC) is one of the most important determinants for the cooking and eating quality of rice grains.

However, most of CMS maintainer lines in China was observed to have high amylose content (more than 22%), their rice is not soft.

characteristics of the maintainer line selected as receptor parent

- (1) F1 combinations should have strong heterosis. Some of them have been broadly used in rice production or performed excellently in regional trials.
- (2) A higher head milled rice rate should be observed in hybrid rice.
- (3) They should have good outcrossing rates and high yield of seed production and reproduction.

key maintainer receptors used in our improved breeding program

Region	Lines
medium <i>indica</i> hybrid rice	II-32B, Ch-29B, Chuan358B
double-cropping rice	Zhong-9B
late hybrid rice	Bo-IIB and Bo-IIIB
widely utilized in Indian hybrid rice production	IR58025B

The (CT)n of <i>Wx</i> gene and AC of donor varieties							
Donor	Subspecies	AC (%)	CT repeats in exon 1 of <i>Wx</i> gene	Origin			
KongYu131*	Japanica	17.2%	18	Japan			
Lemont	Japanica	20.0%	20	America			
KDML105	Indica	15.8%	17	Thailand			
Basmati370	Indica	19.0%	17	India			

The number of introgression lines with intermediate AC Receptors Number of introgression lines⁽¹⁾ Total number Receptors Number of introgression lines⁽¹⁾ Total carly generation) 651 II-32B K81(2)(452),KDML105(83),Basmati370(116), Kongyu131 (carly generation) 651 II-32B K81(87),Basmati370(55), (early generation) 142 Bo-IIB K81(125),Basmati370(85), (early generation) 210 Bo-IIB K81(260) 266

Bo-IIIB	K81(266)	266
Chuan- 358B	K81(513),KDML105(128),Basmati370(172), Kongyu131 (early generation)	813
Zhong-9B	K81(137),Basmati370(60), Kongyu131 (early generation),	197
IR58025B	K81(461)	461
F-32B	K81(167), Kongyu131 (early generation)	167

Rice quality of receptor maintainer lines and improved lines (2008, Hainan)

			The		
Line	Combinations	length	percentage of	Chalkiness	AC
Line	Combinations	/width	Chalky grains	(%)	(%
			(%)		
Ch-29E	3 II-32B/xiangsimiao2	2.5	51.0	9.0	23.5
29309	92037/K81////Ch-29B	2.7	24.2	4	20.0
29311	92037/K81////Ch-29B	3.0	10.1	1	19.3
29981	K81/92037////Ch-29B	2.7	14.4	2.3	19.6
F-32B	You 1B/FeigaiB//L301B	2.7	23.2	6.3	23.1
32716	K81/92097////F-32B	2.7	13.1	2.4	18.1
32720	K81/92097////F-32B	2.7	9.1	1.6	18.5
32789	K81/92037////F32B	3.1	8.2	1.7	20.0
Во-ШВ	(Bo-B/1441)F ₄ /Bo- I B	2.4	12.0	2.1	14.4
Ш-713	K81////Bo <u>III</u> B	2.5	15.1	3.3	18.1

Discussion Identification and application of aroma gene in rice • The methods to evaluate aroma Elution of leaves with dilute KOH chewing grains

Identification and application of the major QTL for PHS

◆QTLs for seed dormancy or resistance to PHS have been identified on all rice chromosomes.

almost all QTLs reported for PHS are able to explain only a small portion of the phenotypic variation.

♦MAS for the major QTL, qPSR8 is a highly efficient way to breed for PHS improvement.

Improvement of AC by using MAS for the SSR markers linked to the *Wx* gene

The granule-bound starch synthase (GBSS), encoded by the Wx gene, plays an important role in determining AC in rice grains;

 Two functional markers in the *Wx* gene, a (CT)n microsatellite (or SSR) and a G/T single nucleotide polymorphism (SNP), have been well characterized with different alleles differing in apparent amylose content (AAC);

◆ It is quite plausible to identify the genotype difference of rice varieties with different eating quality by MAS of the markers tightly linked to the *Wx* gene.

Acknowledgements

The '863' programs from Ministry of Science and Technology (2006AA100101)

'948' program (2006-G1)

National Technology Foundation (2006BAD01A01-1) from Ministry of Agriculture

